Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations.
نویسندگان
چکیده
The tendon to bone insertion serves the mechanical role of transferring loads from a relatively compliant tendon to a relatively rigid bone. The details of the mechanism of load transfer are of great importance, since current surgical procedures for tendon reattachment have high failure rates. We hypothesized that the microscopic structure of the insertion is optimized to minimize stress concentrations associated with this load transfer. To explore this, collagen fiber orientation distributions were measured in the supraspinatus tendons of rats. The angular deviation of fibers was fairly uniform across the insertion, and the mean angles of the local distributions deviated mildly from the tendon axis. To explore how these observed property distributions could influence load transfer, these distributions were used to derive material properties for an idealized two-dimensional mechanical model of an insertion. Comparison between stress concentrations in this idealized model and those in three comparison models suggests that the microstructure serves to (1) simultaneously reduce stress concentrations and material mass, and (2) shield the insertion's outward splay from the highest stresses.
منابع مشابه
Functional grading of mineral and collagen in the attachment of tendon to bone.
Attachment of dissimilar materials is a major challenge because high levels of localized stress may develop at their interfaces. An effective biologic solution to this problem exists at one of nature's most extreme interfaces: the attachment of tendon (a compliant, structural "soft tissue") to bone (a stiff, structural "hard tissue"). The goal of our study was to develop biomechanical models to...
متن کاملAblating hedgehog signaling in tenocytes during development impairs biomechanics and matrix organization of the adult murine patellar tendon enthesis
Restoring the native structure of the tendon enthesis, where collagen fibers of the midsubstance are integrated within a fibrocartilaginous structure, is problematic following injury. As current surgical methods fail to restore this region adequately, engineers, biologists, and clinicians are working to understand how this structure forms as a prerequisite to improving repair outcomes. We recen...
متن کاملThe interface between bone and tendon at an insertion site: a study of the quadriceps tendon insertion.
Traumatic avulsions of ligament or tendon insertions rarely occur at the actual interface with bone, which suggests that this attachment is strong or otherwise protected from injury by the structure of the insertion complex. In this study we describe the terminal extent of quadriceps tendon fibres where they insert into the patellae of adult rabbits, humans, dogs and sheep. Specimens were exami...
متن کاملCircularly polarized light standards for investigations of collagen fiber orientation in bone.
Bone exhibits positive form birefringence dominated by and dependent upon the orientation of its collagen. The biomechanical efficacy of bone as a tissue is largely determined by collagen fibers of preferred orientation and distribution (and corresponding orientation of mineral crystallites), and evidence is accumulating to demonstrate that this efficacy extends to function at the organ level. ...
متن کاملTensile properties and fiber alignment of human supraspinatus tendon in the transverse direction demonstrate inhomogeneity, nonlinearity, and regional isotropy.
A recent study (Lake et al., 2009); reported the properties of human supraspinatus tendon (SST) tested along the predominant fiber direction. The SST was found to have a relatively disperse distribution of collagen fibers, which may represent an adaptation to multiaxial loads imposed by the complex loading environment of the rotator cuff. However, the multiaxial mechanical properties of human S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 39 10 شماره
صفحات -
تاریخ انتشار 2006